Ensemble LDA for Face Recognition
نویسندگان
چکیده
Linear Discriminant Analysis (LDA) is a popular feature extraction technique for face image recognition and retrieval. However, It often suffers from the small sample size problem when dealing with the high dimensional face data. Two-step LDA (PCA+LDA) [1–3] is a class of conventional approaches to address this problem. But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative information. In this paper, by analyzing the overfitting problem for the two-step LDA approach, a framework of Ensemble Linear Discriminant Analysis (EnLDA) is proposed for face recognition with small number of training samples. In EnLDA, a Boosting-LDA (B-LDA) and a Random Sub-feature LDA (RS-LDA) schemes are incorporated together to construct the total weak-LDA classifier ensemble. By combining these weak-LDA classifiers using majority voting method, recognition accuracy can be significantly improved. Extensive experiments on two public face databases verify the superiority of the proposed EnLDA over the state-of-the-art algorithms in recognition accuracy.
منابع مشابه
Ethnicity Identification from Face Images
Human facial images provide the demographic information, such as ethnicity and gender. Conversely, ethnicity and gender also play an important role in face-related applications. Image-based ethnicity identification problem is addressed in a machine learning framework. The Linear Discriminant Analysis (LDA) based scheme is presented for the two-class (Asian vs. non-Asian) ethnicity classificatio...
متن کاملAn ensemble of patch-based subspaces for makeup-robust face recognition
Recent research has demonstrated the negative impact of makeup on automated face recognition. In this work, we introduce a patch-based ensemble learning method, which uses multiple subspaces generated by sampling patches from before-makeup and after-makeup face images, to address this problem. In the proposed scheme, each face image is tessellated into patches and each patch is represented by a...
متن کاملSubspace Linear Discriminant Analysis for Face Recognition
In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...
متن کاملCSLDA and LDA fusion based face recognition
Face recognition has great demands and become one of the most important research area of pattern recognition but there are several issues involved in it. Unsupervised statistical methods i.e. PCA, LDA, ICA are the most popular algorithms in face recognition that finds the set of basis images and represents faces as linear combination of those images. This paper presents a novel layered face rec...
متن کاملResampling LDA/QR and PCA+LDA for Face Recognition
Principal Component Analysis (PCA) plus Linear Discriminant Analysis (LDA) (PCA+LDA) and LDA/QR are both two-stage methods that deal with the small sample size (SSS) problem in traditional LDA. When applied to face recognition under varying lighting conditions and different facial expressions, neither method may work robustly due to limited number of training samples for each class in the train...
متن کامل